Sections
Accueil UNamur > Agenda > Soutenance publique de thèse de doctorat en Sciences chimiques - Benedetto Taormina
événement

Soutenance publique de thèse de doctorat en Sciences chimiques - Benedetto Taormina

Metal phthalocyanines and imidazolium bromide copolymers: a "lego-like" assembly of bifunctional heterogeneous catalysts for different catalytic applications

Catégorie : défense de thèse
Date : 19/12/2025 15:30 - 19/12/2025 18:30
Lieu : Universita’ degli studi di Palermo (Italie)
Orateur(s) : Benedetto Taormina
Organisateur(s) : Carmela Aprile

Jury

  • Dr Luca FUSARO (UNamur), Président
  • Prof. Carmela APRILE (UNamur), Secrétaire
  • Prof. Francesco GIACALONE (Université de Palerme)
  • Prof. Paolo PESCARMONA (Université de Groningen)
  • Prof. Michelangelo GRUTTADAURIA (Université de Palerme)

Abstract

This PhD research focused on the design, synthesis, and catalytic evaluation of novel materials based on metal phthalocyanines (MPCs) and imidazolium bromide salts. The initial materials were extensively characterized using a wide range of analytical, spectroscopic, and spectrometric techniques, including solid-state NMR, XPS, TEM, EDX, FT-IR, Raman, CHN analysis, ICP-OES, N₂ physisorption, and TGA. These systems showed remarkable performance in promoting the cycloaddition of CO₂ to epoxides to form cyclic carbonates. Building on these results, a new class of catalysts was developed by covalently anchoring metal phthalocyanines and imidazolium salts onto multi-walled carbon nanotubes (MWCNTs), yielding materials denoted as MPC@MWCNTs. This strategy enabled the creation of a versatile family of catalysts—prepared with different metal centers (Al, Mg, Fe, Ni, Co, Cu, Zn)—while maintaining a unified synthetic approach. The incorporation of MWCNTs was aimed at enhancing both catalytic activity and stability through synergistic support effects. The resulting MPC@MWCNTs were successfully applied in diverse catalytic contexts: CO₂ valorization into cyclic carbonates (Mg-, Fe-, Cu-, and Zn-based systems), nitro-reduction reactions to afford amines (Fe-based system), and electrocatalytic methanol oxidation for energy-related applications (Ni-based system). Overall, this work demonstrated the potential of MPC@MWCNT hybrid materials as robust, tunable, and multifunctional catalysts for sustainable chemical transformations.

Link

https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZjZlZjBjNWUtODIyNC00MjVkLWFkYzMtYWYxNzRlY2QwYmE5%40thread.v2/0

Télecharger : vCal